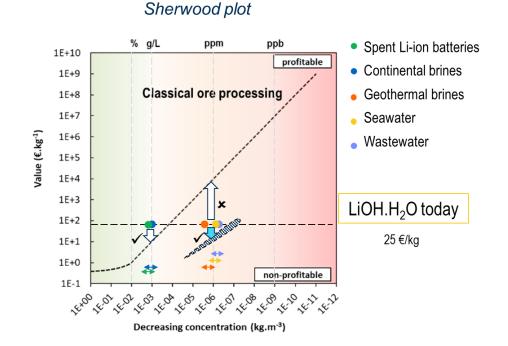
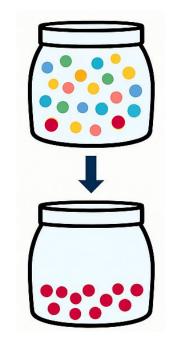


GDEx: A selective electrochemical route for recovering precious metals and other critical raw materials


Omar Martinez Mora (PhD)

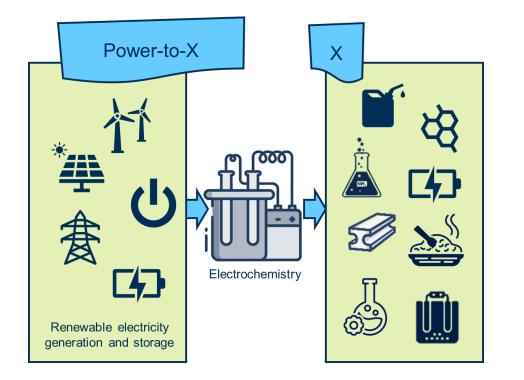


The challenges of recovering metals of diluted sources

A jar of full of marbles

Processing costs need to reduce significantly to make recovery from dilute matrices profitable

Can we recover just the red sustainably...and economically?



2

At VITO's ELEC team we believe that electrochemistry...

... is the solution

Our expertise:

- Design and build of electrochemical components
 - Electrodes, electrocatalysts, membranes, etc..

Electrochemical processes development

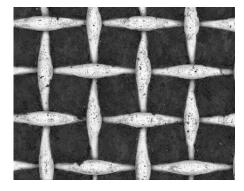
- Hydrogen production
- CO₂ capture and conversion
- Organic electrosynthesis
- Critical raw material recovery
 - GDEx

#EUGREENWEEK

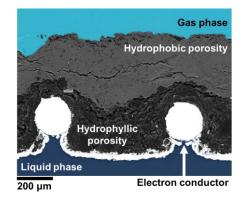
3

What is GDEx?

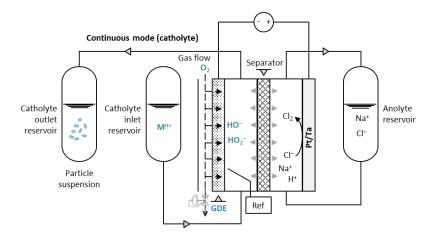
How does GDEx contribute to the sustainable recovery of critical raw materials?



Gas-diffusion electrocrystallisation (GDEx)

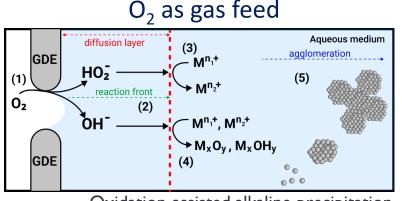

Process of reactive precipitation of metals in solution with oxidising or reducing agents produced *in situ* by the electrochemical reduction of a gas, in a gas-diffusion electrode.

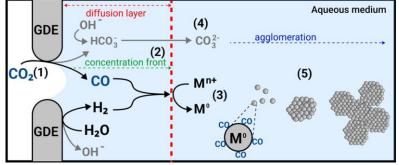
Our journey starts with a gas-diffusion electrode


Front view

VITO CoRe®

Cross section


Lab-scale GDEx reactor


Gas-diffusion electrocrystallisation (GDEx)

Process of reactive precipitation of metals in solution with oxidising or reducing agents produced *in situ* by the electrochemical reduction of a gas, in a gas-diffusion electrode.

Oxidation-assisted alkaline precipitation

CO_2 as gas feed

Reduction-assisted buffered precipitation

Recovery of metals from waste stream solutions

Synthesis of nanoparticles

- Metal (hydr)oxide nanoparticles
- Elemental nanoparticles

Dominguez-Benetton, X. et al. (2015) Patent EP32422963B1 Dominguez-Benetton, X. et al. (2021) A process for precipitating particles of platinum group metals. EP21165681.

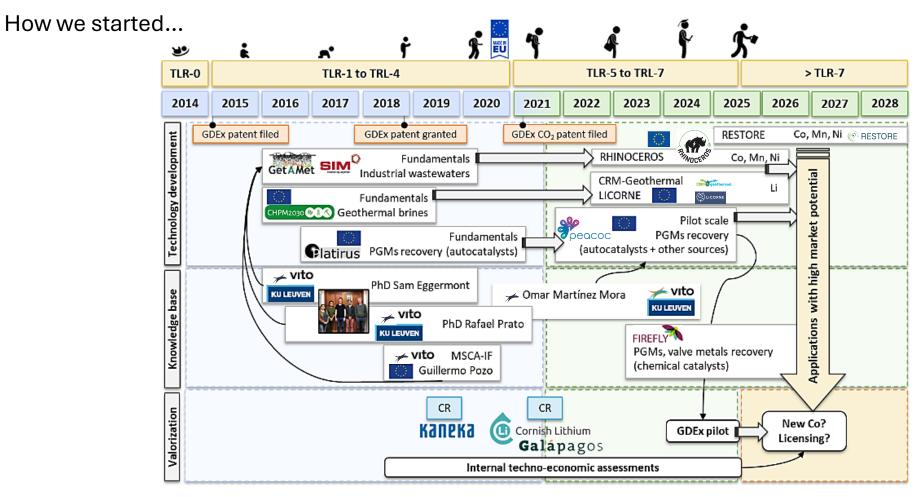
Gas-diffusion electrocrystallisation (GDEx)

1	1				Ap	plic	abl	e to	mai	ny m	ieta	ls					2
H 3 Li	4 Be]	Pr	5 B	6 C	7 N	⁸ 0	9 F	He 10 Ne								
Na	12 Mg		+ Higher interest											15 P	16 S	17 CI	18 Ar
¹⁹ K	20 Ca	21 Sc	22 Ti	²³ V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
³⁷ Rb	38 Sr	³⁹ Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	44 * Ru	45 * Rh	46 * Pd	47 * Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	⁷⁴ W	75 Re	76 Os	77 * Ir	⁷⁸ * Pt	79 * Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
Fr	⁸⁸ Ra	89 Ac	¹⁰⁴ Rf	105 Db	106 Sg	¹⁰⁷ Bh	108 Hs	¹⁰⁹ Mt	110 Ds	111 Rg	¹¹² Cn	113 Nh	114 Fl	115 MC	116 LV	117 Ts	¹¹⁸ Og
Uue			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu]
O₂-GDEx			90 Th	91 Pa	⁹² U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	103 Lr	

Lithium recovery:

Battery recycling (Mn, Ni, Co, Li)

#EUGREENWEEK


PGM + Au, Ag recovery:

Peacoc FIREFLY

*CO₂-

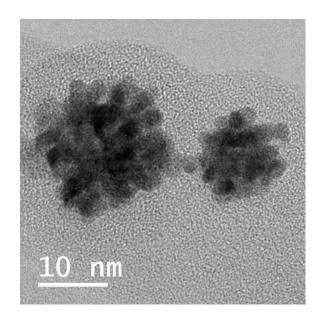
GDEx road map: from lab to real-world applications

Xóchitl Dominguez

... and where we are

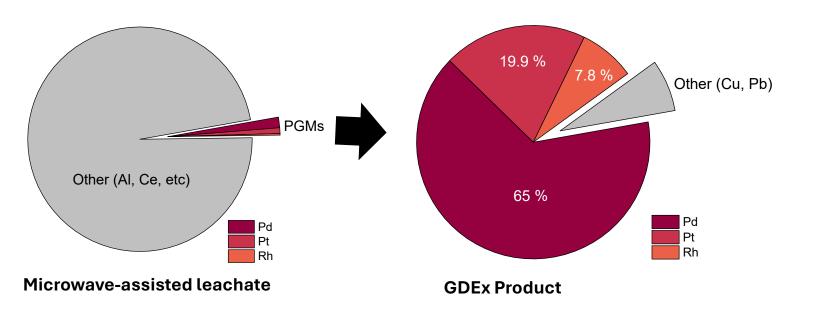
What sets us apart

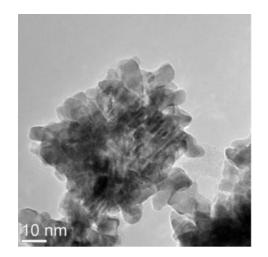
- Low-grade precious metals
 - Diluted streams
 - Selective recovery
- Electrification
 - Coupled with renewable energy
 - 2 kWh 6 kWh per kg of recovered material
- Upcycling
 - Same or new applications


GDEx - PGMs Separation and purification Leaching Metal recovery ≝**‡**≍ Refining Smelting Ore processing 2 Recycling Intermediates fabrication Primary mining Pre-processing Manufacturing Collection Use ¢ 3

GDEx was awarded as one of the top 10% great innovations by the EC-Innovation Radar for its application in the recovery of PGMs from catalytic converters.

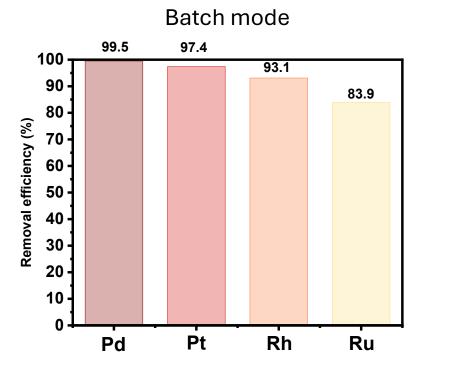
From synthetic solutions...



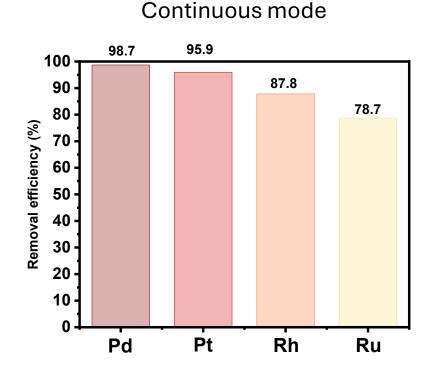

• In controlled conditions, GDEx enables the precipitation of PGMs as nanoparticles with controlled morphology and composition, which can be used in electrochemical energy applications.

...to real waste streams

SAC's MWAL leachates

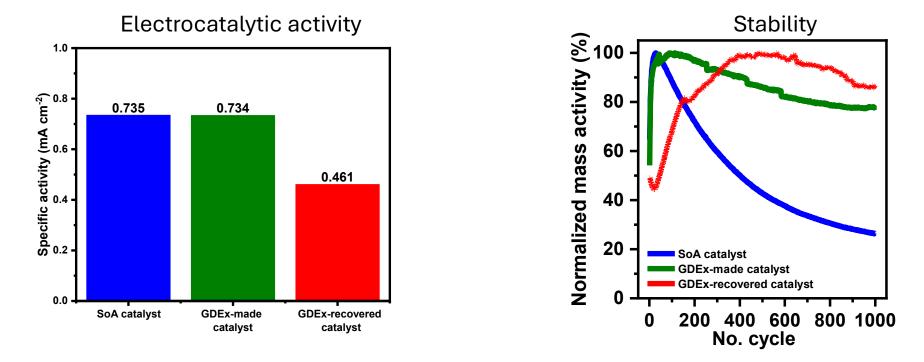

🗲 vito

- **PGM** precipitation: ~100% in all cases
- ~90% PGM content in NPs formed (~10% Cu + Pb, rest: traces of Al + Si)
- Leachate reuse and regeneration feasible.



...to real waste streams

- High removal efficiency across all PGMs in batch mode
- Consistently high recovery in continuous operation
- The robustness of the GDEx process to recover PGMs from different matrices is demonstrated

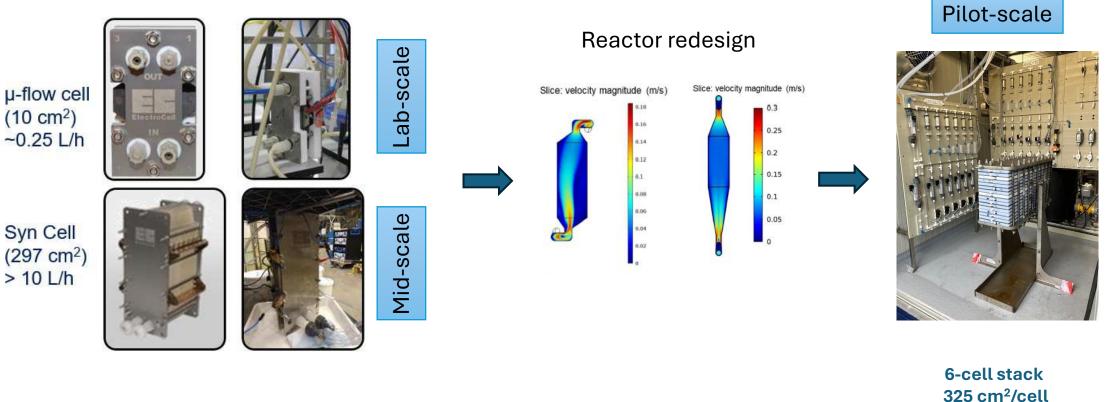


PGMs: 2-100 ppm

JM

Validating the use of recovered PGMs into electrocatalysts for energy applications

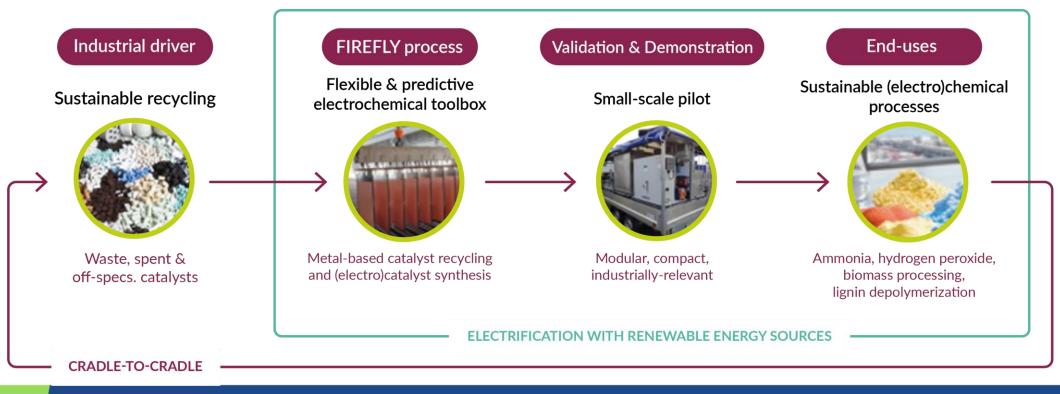
Electrochemical oxidation of methanol



• GDEx-made synthetic and recovered PGM-based nanomaterials show promising electrocatalytic performance vs. SoA materials opening the door the direct use of recovered materials as electrocatalysts for energy applications.

Scaling up: improving the reactor design

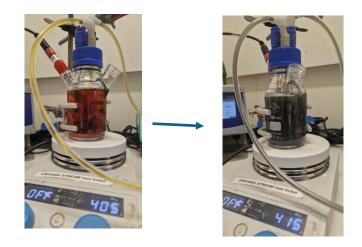
100 L/h



GDEx is part of a broader push to electrify the chemical industry: the FIREFLY project

The FIREFLY project aims to electrify a large part of the chemicals value chain in a sustainable way (environmental, economic, social): **Power-to-catalysts and chemicals fostered via electrochemical recycling.**

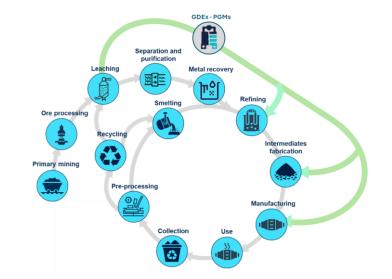
Pushing the limits: even in harsh conditions



From aqueous to organic solutions

Limitations to overcome

- Stream conductivity
- Solvent electrochemical window
- Reactor components stability
- GDEx can be used to recover **Pd** and **Rh** from streams based in polar solvents such as **methanol**, **acetonitrile and dimethyl formamide**.
- The recycled metals has been used to produce new catalysts for applications such as lignin depolymerisation or biomass conversion



Take away message

GDEx is a flexible electrochemical process that can be integrated into recycling value chains to enable the sustainable, cost-effective recovery of metals from waste, spent, and off-specification materials — transforming them into valuable resources for clean energy and technology.

Thank you for your attention!

GDEx team

GDEx publications

