

Microwave-assisted leaching of precious metals from end-of-life products

Frantisek Kukurugya, Jeroen Spooren

Turning fundamental research into solutions

Creating value and increased competitiveness for companies and governments

Waste Recycling Technology Team

R&D portfolio – Alternative resources

4

R&D portfolio – Recycling technologies

•

eacoc

Characterise-to-Sort Dusty plasma classification **Physical separation** 2551 532 532 1356 237 1356 2745 1071 0 0 00040000 - 10 MA Heap leaching Electrochemistry Hydrometallurgy MW processing Preheating Granulation Carbstone Immobilisation **Flash calcination**

Introduction into MWAL

Electromagnetic radiation

Microwave radiation

High-frequency non-ionizing radiation Wavelength (λ): 1 meter to 1 millimeter Frequencies (f): 300 MHz (1 m) and 300 GHz (1 mm)

How can be MW radiation applied in hydrometallurgy?

Reflection Metals 0

Advantages of MW heating:

0

- Fast heating resulting in shorter processing time
- Direct, selective and volumentric heating (inside out) \geq
- Electrification of metallurgical processes \geq

7

Industrial applications (so far):

- Food processing (tempering, blanching, pasteurization, sterilization, etc.) ٠
- Drying (paper, plastics, ceramics, wood, rubber, etc.) ٠

Application in metal extraction limited to a mean to digest solid samples prior to a chemical analysis (e.g. ICP, AAS)

MWAL position within H2020 PEACOC

9

Optimization of the MWAL

1700 mg/kg Pd 943 mg/kg Pt 272 mg/kg Rh

COC

Cordierite ((Mg,Fe)₂Al₄Si₅O₁₈) Tayheranite (ZrO₂) Cerianite (CeO₂) Corundum (Al₂O₃)

10

Objectives:

- > Optimize the leaching system:
 - by reducing HCl concentration
 - by replacing Cl⁻ from HCl by alternative source (NaCl)
- > Optimize addition of oxidizing agent
- > Optimizing reaction temperature and time
- > Optimize liquid to solid (L/S) ratio

Optimization of the MWAL at lab scale

20

0

Pd

11

Ρt

Rh

COC

Effect of leaching time

Effect of oxidizing agent

(Laboratory) Upscaling

Additional optimization and data gathering

- Liquid-to-solid ration (5-10)
- Mass loss ٠
- Data regarding temperature and pressure .
- **Energy consumption**
- Leachate recycling •

Optimization of the MWAL at lab scale

Additional literature sources:

Combined microwave assisted roasting and leaching to recover platinum group metals from spent automotive catalysts

Jeroen Spooren (Ph.D.)*, Thomas Abo Atia (Ph.D.)

Waste Recycling Technologies, Sustainable Materials Management, Flemish Institute for Technological Research, VITO N.V., Boeretang 200, 2400 Mol, Belgiam

Thomas Abo Atia^{a,1}, Wendy Wouters^a, Giuseppe Monforte^b, Jeroen Spooren^{a,7} 3 Waste Recycling Technologies, Flemish Institute for Technological Research, VITO N.V., Boeretang 200, 2400 Mol, Belgian ^b CNR-ITAE, Istituto per le Tecnologie Avanzate "Nicola Giordano", via S. Lucia sopra Contesse, 5, 98126 Messina, Italy

13

Overview with a Focus on Processing Spent Autocatalyst

Upscaling of the MWAL process

Conclusion

- MWAL demonstrates strong potential for sustainable, efficient metal recovery
- Fast, direct, selective, and volumetric heating via microwaves proves viable for hydrometallurgy.
- Upscaling MWAL technology from lab-scale to pilot-scale (TRL7) is a key technological milestone
- The PEACOC project illustrates the value of collaborative research in driving circular economy innovation
- Application of MWAL technology with other streams to recover critical raw materials

6 June 2025

EU Green Week Partner Event

fero.kukurugya@vito.be jeroen.spooren@vito.be

The project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement N° 958302

Thank you for your attention

