

Gas-Diffusion Electrocrystallization

The project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement N° 958302

LUIS F. LEÓN LUIS.LEON@VITO.BE

PEACOC's value chain for PM recycling

Gas-diffusion electrocrystallization (GDEx)

GDEx recovery – PGMs

A sustainable electrochemical process that selectively converts low-grade PGMs from complex PGMs-bearing liquid streams (*e.g.*, leachates) into upcycled products that can be re-integrated into the PGMs value chain.

Gas-diffusion electrocrystallization (GDEx)

e . e (a) diffusion layer GDE - CO2 CO -0, H₂ **∢** (1)Men H₂O -HCO; 🗲 CO_2 CO_{2}^{2} e GDE 2(q)(b) diffusion layer GDE Meⁿ⁺ HO_2^-, OH^- CI $\cdot 0_2$ H₂0-Me_{hydroxide} Meoxide GDE

GDEx was presented as a great EUfunded innovation by the European Commission for its application on PGM recovery

"GDEx is an electrochemical process for the synthesis of metallic and/or metal oxide nanoparticles, where reducing or oxidizing agents are produced *in-situ* during the electrochemical reduction (or oxidation) of a gas in a gas-diffusion electrode.

Fig 1. Schematics of GDEx operation depending on gas supplied: (a) CO_2 , (b) O_2 .

Gas-diffusion electrode in a flow cell

Gas-diffusion electrocrystallization (GDEx)

GDEx for direct PGM recovery and NP synthesis

Volume charge density (C L¹)

 ✓ Effective PGM recovery from synthetic solutions and synthesis of metallic nanoparticles

Martinez Mora, O., G. Pozo, L. F. Leon-Fernandez, J. Fransaer and X. Dominguez-Benetton (2023). "Synthesis of platinum group metal nanoparticles assisted by CO₂ reduction and H₂ cogeneration at gas-diffusion electrodes." <u>RSC Sustainability</u>.

GDEx for direct Au (and Ag) recovery and NP synthesis

GDEx for direct PGM recovery and NP synthesis

GDEx applied to relevant industrial streams

500 nm

9

Some reactor configurations

10 cm², 250 mL

297 cm², 1 m³

Currently: pilot for 100 L/h for PMs (Pt, Pd, Ru, Au, Ag) recovery

11

Engineering and construction of the pre-commercial pilot

GDEx stack design

- A stack of 6 cells. 1 Pt/Ta electrode shared by 2 cells. 1 Gas chamber shared by 2 cells.
- Active area 325 cm²/cel
- The GDEx up-scaled unit is designed to operate at a flow rate of 100 L h⁻¹.
- The pilot will be operating in Monolithos Catalysts & Recycling Ltd infrastructures (in Greece).

Engineering and construction of the pre-commercial pilot

Cathode and anode chambers

Qin=1000 ml/min

Velocity magnitude (m/s)

Outlet

- 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Inlet
- - Adequate flow distribution ٠
 - Centered channels
 - Manifold system to split and distribute catholyte (and anolyte) to the different (unit) cells of the stack

Gas chamber

- Bolts to fix the GDE properly and prevent leaks.
- Bolts placed on the side do not disturb the flow

This project has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement n° **958302**

Xóchitl Domínguez

Jan Fransaer

ACKNOWLEDGMENTS

Omar Martínez

Horizon 2020 Programme

🗡 vito

Fero Kukurugya

🗡 vito

Jeroen Spooren

Ramin Rabani

The project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement N° 958302