

EU -

The use of Deep Eutectic Solvents in the context of CROCODILE H2020 project

CRO

11th MAY 2022

0

Jokin Hidalgo

Jokin.Hidalgo@tecnalia.com

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Introduction: The need

- Batteries are essential for energy storage in the electronics used in our everyday lives:
 - Small portable electronic devices (cell phones and laptops)
 - Medical devices
 - Electric vehicles

Their use is continuously growing:

30 Initiatives projected for producing Li-Ion Battery

For 2050, exponential growth is projected

tecnal:a

MEMBER OF BASQUE RESEARC & TECHNOLOGY ALLIANCE

Introduction: The problem

The expansion of EV market lead to a fast growth of battery <u>residues</u>

Millions of electric car batteries will retire in the next decade. What happens to them?

The quest to prevent batteries - rich in raw materials such as cobalt, lithium and nickel - ending up as a mountain of waste

▲ Batteries at a factory in Nanjing in China's eastern Jiangsu province, which makes lithium batteries for electric cars. Photograph: STR/AFP via Getty Images

- Materials scarce in Europe that lead to a great dependence of non-EU countries.
- Extraction and refining in third countries leads to high socioeconomic and environmental impact.

For example for the **Co** :

- At least, 50% of the cobalt comes out of the mines in the Democratic Republic of the Congo
- 43% of refined cobalt is produced in China

& TECHNOLOGY ALLIANCE

Introduction: The problem

Some of the challenges faced in current recycling SOA technologies:

- High environmental impact
- High energetic cost
- Low recovery yields
- Not all metals are recovered from batteries
- High generation of waste (slag and gas emissions)
- High CAPEX (limits the generation of new recycling companies)
- Use of strong inorganic acids

& TECHNOLOGY ALLIANCE

CROCODILE

CROCODILE project

Secondary resources

1. Co-bearing scraps

2. Spent NiCoMo catalyst

3. EOL Co containing batteries

DES: Systems formed from a eutectic mixture of Lewis or Brønsted acids and bases (hydrogen bond donor + hydrogen bond acceptor). They are classified as types of ionic solvents with special properties: eutectic with a melting point much lower than either of the individual components.

- Low toxicity
- Low cost
- No flammable
- Reduced environmental impact
- High recovery yields
- Reusable

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

DES (Hydrogen bond donor + Hydrogen bond acceptor) + H2O & additives

CROCODILE project

Cobalt-bearing residues

DES leaching (Reductive/ Oxidative)

Secondary resources

Impurities: Ni, Li, Mn, Cu, Al, Fe, Zn, Mg

CROCODILE

Experimental: Input sample analysis

Broad type of samples were characterized: ICP/TXRF, XRD, SEM-EDS.

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

80																							
70		CP /	/ TX	RF																			
60																			N	letal	Con	tent rai	nge (%)
60 ⁵⁰																				Li		2-6%	, D
⁴⁰							8	*		**	000000				8	N				Co		8-38%	6
00 Meta				N		g			8					2	I	I	1000			Ni		1-21%	6
20	I					g	I													Mn		1-17%	6
.0	g	J	I	I	g	I	Ø	Ø	g	g	I	I	g	g	g	Ï							
	Α	В	С	D	Е	F	G	Н	Ι	J	K	L	Μ	Ν	0	Ρ	Q						
	C	o (%)) ∎I	Li (%) 🖪	Ni (%	。) 🖸	Mn ((%)	🗖 Cu	ı (%)	∎A	\ (%)	8	⁻ e (%)							

Experimental: Input sample analysis

SEM - EDS

SEM-EDS mapping shows the metal distribution in the particles

Experimental: Input sample analysis

XRD

Different predominant mineralogical species were found by XRD, depending on the BM sample and pre-treatment processes performed:

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Experimental: Leaching conditions

Ternary Deep Eutectic Solvent mixture

- Time [0-24h]
- Temperature [55-85°C]
- BM:DES:Water ratios
- Additives

MEMBER OF BASQUE RESEARCI & TECHNOLOGY ALLIANCE

Experimental: Leaching results

Temperature

>

BM:DES:water ratio

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Experimental: Leaching results

Additives: dosage of external additives

Conclusions

DES Leaching

tecnalea

- It has been proved the viability of leaching most of the Co present in BM residues from LIBs in about 3 h and at low working temperature (55°C) by using <u>DES</u>
- The obtained results indicate that the use of additives may be necessary for some type of BM
- Knowledge of the nature of the black mass to select the adequate operating conditions of the treatment is required

utarantula

ION RAW

Speacoc

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Jokin.Hidalgo@tecnalia.com

Project Coordinator: Amal Siriwardana <u>Amal.Siriwardana@tecnalia.com</u>

CROCODILE website: <u>https://h2020-crocodile.eu/</u>

in Research group : https://www.linkedin.com/showcase/tecnalia-waste-valorisation

This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 776473

